If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64+b^2=144
We move all terms to the left:
64+b^2-(144)=0
We add all the numbers together, and all the variables
b^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| 0=16^2-96t+7 | | 2n-10=5 | | 2,000(x+3)=20,000 | | 23+x=30 | | 1/3x=5/9= | | 2n+13=n | | 12(x-12=4x+44+4x+28 | | 10x+18=11x+6 | | 10(25+x)=66 | | 4(x+4)=x+19 | | x9+16=x5+72 | | 10x-18=11x+6 | | 6x+42+3x-86=2x+36+5x+54 | | 2k-20=-7 | | 32824s−= | | 12w+12=-7w+11 | | 2n+8=4n+12 | | a+⅘=a+6/7 | | 18+-2a=8 | | 2(x+1)+3(x+2)=+16 | | 5-1m=12 | | 8(x-6)=2x+52+2x+44 | | X+1/2+x+2/3=8 | | (3x-8)+(2x+12)=180;x=14 | | 51m=13 | | 7(x-6)=1x+33+3x+54 | | 127=-8j-9 | | 8k+7=14 | | x^2-44=125 | | 12x-19=6x+65 | | 19/4p=5 | | (3x-8)+(2x+12)=180;x=7 |